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. ABSTRACT In the classical estimation problem, it is
I : - desired to achieve an estimation of the spectral
preay The ability to model random time series plays denaity function (2) from observations of a time
E ,,_‘_J a prominent role in a variety of applications as geries. Without loss of generality, these obser-
examplified by seilsmic data analysis, doppler vations will be here taken to be the N contiguous
A o | radar processing, speech processing, adaptive elements
filtering, and, array processing. Undoubtedly,
ﬁ two of the more popular proceduraes for effaecting x(1), x(2), . . ., x(N) (3)
such time series models are the classical Fourier
(MA) approach and the maximum entropy (AR) method. A variety of procedures have been proposed for
Q In this paper, a theoretical comparison of these using these observations to achieve a spectral
< contemporary procedures with a more general ARMA density estimate. Without doubt, the overwhelming
method will be made. It will be demonstrated that aumber of procedures ultimately result in a
the gpectral estimation performance of the ARMA rational spectral density model which fits the form

method typically exceeds that of its more special-
ized MA and AR counterparts. With this supremacy

X | b, +b e-jw+...+b e iaw 2
thus establigshed, a recently developed method for Sx(ejw) = { 3
|

effectively generating ARMA model estimates from 1 +ale-Jw+ ... *a e-jp‘"
time series observations will be then presented. P
\‘ jw
I. INTRODUCTION Ba(e™)
- (4)
w
A problem which arises in a variety of appli- A (ej )
P cations is that of estimating the statistical
characteristics of a random wide~-sense stationary The a; and by coefficients of this model are
time series (x(n)}. This estimation is typically referred to as its autoregressive and moving
based upon a finite set of time series observations. average coefficients, respectively. This model is
In many signal processing applications, oaly the commonly referred to as an autoregressive-moving
second order statistics as represented by the time average (ARMA) spectral model of order (p,q) where
< series' autocorrelation sequence q and p denote the orders of the numerator and
. x denominator polynomials, respectively. It is
: r (n) = Eix(mtm)x (m) } (1) readily shown that any continuous (in w) spectral
- density may be approximated arbitrarily closely by
. {s required. In this expression, the symbols E the above rational model if the order (p,q) 1is
: and * denote the operations of expectation and com- sslected suitably large. Thus, the robustness of
f plex conjugation, respectively. Upon taking the this rational model is apparent.
H Fourier transform of this deterministic auto-

In studies directed towards spectral analysis,
c tl e, we obtain the associated
-. ;Zw::il‘:peztt‘r:iq::z;ity fu:ction the preponderance of effort has been directed to-
i wards two special cases of the genersl ARMA model

u : ju ® ~jwn (4). They are the moving average (MA) model for
] S (e Y= ¥ r (n)e (2) which A,,(-J“) 5 1, and, the autoregressive (AR) r
N \ n=—o model for which Bq(ej“’). = bg. The spectral density

< arising from a MA model is seen to contain no poles,
1 It often happens that the essential attributes of and, as such it is known as an all-zero model.
"_ a time series are more discernible from its fre- Similarly, the AR model is referred to as an all-
" —~ quency domain spectral density function than from pole model, and, the general ARMA model is seen to D

- >3 its equivalent time domain autocorrelation sequence. be a pole-zero model. Undoubtedly, the primary a

3— It is with this in mind that interest in spectral reasons for interest in the special case MA and AR
3 O estimation techniques has evolved. wmodels are that they:
" D N——
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(111) are synthesizable by efficient algorithms.

Despite these factors, it is widely recognized that
the more robuat ARMA model typically provides a
much superior spectral estimation performance and
uses fewer model parometers in the estimate. The
main impediment to its use on a wvider scale has been
the lack of a specific procedure for obtaining the
ARMA model pavameters in a computationally effici-
ent manner. Recently, an ARMA spectral modeling
mathod which possesses this computational capabili-
ty has been developed [ 1]~ (4]. The main

features of this new procedure are outlined in
Sections IV and VI.

In the next three sections, theoretical pro-
cedures for generating MA, AR, and ARMA models from
a finite set of actual autocorrelation values are
presented. This is then followed by an example
section which treats the classical problem of
spectral estimating a time series composed of two
sinusoids in additive white noise. It is there
shown that the more general ARMA wodeling procedure
easily outperforms its special case MA and AR
modeling procedures. With the ARMA spectral wmodeling
methods superior performance thereby demonstrated
for this idealistic situation (i.e., actual auto-
correlation values are given), we next direct our
attention to the more practical problem of genmerat-
ing ARMA spectral estimates from a finite set of
observactions (3). In particular, the recently
developed high performance ARMA modeling method 1is
outlined ([2}&[4]. This novel procedure has
been found to outperform such alternate ARMA
modeling procedures as the Box-Jenkins method [10)
and whitening filter approaches [11)&[12].

II. MA SPECTRAL MODELING

There exist a variety of procedures for obtain-
ing a MA model of a wide sense stationary time
series. These include the periodogram and differ-
ent versions of the autocorrelation method. In
each case, the spectral estimate will be of the
form

2
§ (ed¥y o -jw ~jqu
S,(e’) by+bye T+ . . . +ch (5)

This MA spectral model requires a rather large
value for the order parameter q to enable it to
achieve a desirable frequency resolution perform-
ance. Unfortunately, this requirement can lead to
a rather poor spectral estimation behavior in the
case of moderate length time series observations.
This behavior will be fllustrated in the numerical
example section.

In this section, we will be concarned with
evolving a MA gpectral estimate procedure for the
special case in which one has available the q+1
autocorrelation elements rx(O). rx(l).. . .,tx(q).

With this information provided, a standard esti-
macion is generated by the truncated series [5].

- q -
§ (e o T winr (mye73em (6)
x neeq x

in which w(n) is a symmetric window function which
is selected to effect some desired behavior. In
the pure truncsted case, the rectangular window is
used in which case w(n) = 1 for |q|<n. Since the
autocorrelation sequence is a complex conjugate
symmetric function of a (i.e., ry(-n) = ry*(n)),
one can readily show that expression (6) can be
equivalently represented in the form specified by
expression (5) whereby the prevailing coefficients
are related by

- q
w(o)r, (n) = ) bkbl:-n for Osnsq (7
k=m

Given the g+l values of the product w(m)ry(n), one
may readily solve this nonlinear system of q + 1
equations to obtain the MA spectral models by co-
efficients as used in expression (5). Exprassions
(6) and (7) then constitute a systematic procedure
for generating a MA model of time series based on
given autocorrelation values.

In most spplications, one has available only
a get of time series cbservations (3) (and not
autocorrelation values) upon which to generate a
MA spectral model. If expression (6) 1s to be used
for this objective, it will then be necessary to
obtain estimates of the autocorrelation elements
from the given time series observations. The un~-
biased estimator as specified by

. 1 N-n
F_(n) = == ¥ x(o+k)xTk) O<nzq (8)
x N-n kel

ias often used for this purpose in which it is
assumed that the MA model order is such that q<N.
Alternatively, the periodogram method haa served

as a useful procedure for effecting a MA spectral
estimate from a set of contiguous time series obser—
vations [ 6] . The periodogram possasses the
additional advantage of being efficiently imple-
mented by the fast Fourier transform algorithm.

The inherent order of a MA periodogram model is N-1l.

III. AR SPECTRAL MODELING

In this section, the method of linear pre-
diction 1s used for generating an AR spectral model
associated with a given time series. In particular,
the coefficients of the pth order AR spectral model
as specified by

b 2

S (39 o l 0

S ()

'l+nle-jw+. . .+.pe‘jw

9)

will be determined by solving a system of p+l
linear equations in the p+l coefficient unknowns
41, 43, . . ., ap, bg. These equations are obtain-
od by considering the specific problem of pre~
dicting the time series element x(n) by a linear
combination of the p most recent time series
elemants x(n-1),x(n-2), . . ., x(a-p). Tt will
turn out that the resultant set of optimal equat-
ions thue obtained will correspond exactly with
those equations which arise when using the
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"maximum entropy" method of spectral estimatiom.
This equivalency has been previously recognized [7].

As indicated, the task at hand is that of
estimating the time series element x(n) by means of
the linear combination

P
x(n) = - § a, x(n-k) (10)
k=l
in which the optimal prediction coefficients ay’

are to be ultimately used in the AR spectral model
(9). The prediction error is formally given by

e(n) = x(n) - x(n)
p
= x(n) + Z akx(n-k) (11)
kel

It i3 now desired to select the complex valued ay
prediction coefficients so that the expectad value
of the error's magnitude squared is minimized. Ome
may straightforwardly show that this mean squared
error is given by

P
ECen) |2 =r (0) + § [a,r (=k) +a’c_ (K]
X k’l akx a“x

P P
+ 71 aka;rx(m—k) (12)
k=1 m=1

Upon using standard calculus methods, {t is found
that the minimizing predictor coefficients must
satisfy the following system of p linear equations

p

Z a; rx(m-k) = —rx(m) for l<m<p (13)
kel

If this optimal selection is inserted into ex-
pression (12), the minimum mean squared error 1is
found to be

p
Ece (|l mr (04 [ alr (<) (14)
kel

In summary, the optimal predictor coefficients
are obtained upon solving the system of linear
equations (13), and, the corresponding minimum
mean squared error is computed by means of relationo-
ship (l4). From a computational viewpoint, howevar,
a more efficient method for iteratively obtaining
the optimal predictor performance is obtained by
incorporating relationships (13) and (14) into the
single expression

= r hnl =~

Trx(O) rx(-l) e rx(-P) ]; 1 ' Ep

T E (O e P | a] | O
| 55 =10 (15)
1y e .

T lp) rx(p—l).... rx(O) J!-apg _04

in which Z, = E(Io'(n)lz}. One may solve this Toeplits

system of equations using the Levinson algorithm
in a computationally efficient order update manner

(e.g., see ref. [ 7]). Namely, the optimal co-
efficients of the p+15t order predictor may be
recursively obtained from the optimal coefficients
of the pth order predictor. As indicated previous-
ly, the system of equations (15) is identical to
that obtained when using the maximum entropy

method of spectral estimation.

If the optimal predictor is performing its
objective, it follows that the prediction element
x(n) will contain all which is predictable in x(n).
As such, the prediction error (11) is white like
in behavior and its spectral density is then given
by Se(eJ®) = E,. This behavior 1s of course de-
pendent on makgng the order parameter p sufficient-
ly large so as to achieve the desired perfect
prediction. Assuming this prediction behavior, it
then follows from relationship (11) that the
spectral density function of the time series {x(n)}
is _given by expression (9) in which the coefficient
bo2 = E, and tha a coefficients are obtained
upon soEving relationship (13) or equivalently
relationship (15).

In this analysis, it has been assumed that
one has available the time series autocorrelation
values r,(0), ry(l), .» Ty(p). More realistic-
ally, such perfect autocorrelation knowledge is
almost never available. In a typical application,
one has available only a sampled set of time series
obgervations as exemplified by expression (3). If
the AR spectral estimacion procedure as represented
by expression (15) 1s to be {ncorporated, one could
use the given time series observations to obtain
estimates of the required autocorrelation elements.
Alternatively, a set of determinfatic prediction
error equations can be minimized so as to obtain
the prediction coefficients. In effect, this is
the approach usually taken in evolving the Burg
algorithm (71},

IV. ARMA SPECTRAL MODELING

The time series {x(n)} is said to be an ARMA
process of order (p,q) if it fs generated sccording
to the linear causal relationship

|4 q
x(n) + ] a x(n-k) = b, w(n~k) (16)
k-llk kZO k

where the excitation sequence {w(n); is a zero mean
white noise time series whose individual elements
have variance one. It is a simple mattar to show
that the spectral density function associated with
this response time series {x(n)} is given precisely
by expression (4). Thus, there is an equivalency
between a rational spectral density model and the
response of a linear system to a white noise
excitation.

s Coafficient Determination

A procedurs for {dentifying an ARMA model's
a, sutoragressive coefficients {nvolves examining
its second order statistical characterization.
This is achieved by first multiplying both sides of

C et s e e
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expression (16) by x*(n-m) and then taking expect-
ed values. The results of this operation are the
well known Yule-Walker equations

P
r.(@+ Jar(mk) =0 form>q an
x k‘l‘kx

where it is important to note that the lag vartable
= is here restricted to be larger than the ARMA
model’s oumerator order q.1

In effect, the above Yule-Walker equations
indicate that an ARMA time series’' autocorrelation
elements are interrelated in a well defined linear
manner for appropriate lag values. This obaer-
vation then provides the vehicle for determining
the ARM/ >del's associated ay coefficients. To
be more s,ecific, let us now express the first ¢
Yule-Walker equations (17) in the following matrix
format

[-rx(q) rx(q-l). . .rx(q+l-p)-] al‘l rx(q-o-l)-}
!’rx(qﬂ) £ (@ - . . 1 qr2-p)|fay N r, (q+2)
| .
J
. ap
rx(q-o-t-l) rx(q+t-2). . or (ate-p) - rx(q+t)
) T oae

or in the more compact representation
Ra=-r 19

vhere R is a txp matrix and a and r are pxl and
txl vectors, respectively.

It is readily shown that this system of aquations
will have a unique solution provided that t > p

To obtain the ARMA model’'s ay coefficients, one
then simply solves this system of linear equations.
From a computational viewpoint, it is convenient
to set t equal to its minimum value of p. For
reasons which will be spelled out in Section VI,
however, it will often be advantageous to let

t take on values exceeding »p.

b, Coefficient Determination

To determine the ARMA model's by coeffici-
ents, it will be expedient to introduce the auto-
correlation sequence's causal image

e} o) - r (@u@) - 3 £, (006(n) (20)

wvhere u(n) and &(n) denote the standard unit~

step and Kronecker delta sequences, respectively.

The autocorrelation sequence may be recoversd from
its causal image through the relationship

rx(n) - r:(n) + r:(-n)" (21)

lrh. Yule-Walker equations associated with lag
values 0 <m <q will involve the ARMA model's by
coefficients in a nonlinear manner.

whose validity is established by making use of the
complex conjugate symmetry property of auto-
correlation sequences (i.e., r(-n) = t*(n)). The
Fourier transform of expression (21) is found to
be

L]

Juy o g ¥(ed® +ed®
Sp(e) =5 () + s (e) (22)

in which Sy (e]®) denotes the Fourier transform of
the autocorrelations' causal image (20). In what
is to follow, a systematic procedure for identify-
ing S*(ejw) will be given which,with the utilizat-
~on oz expression (22), results in the overall times
series’' spectral denmsity.

This identificstion is perhaps best achiaved
by introducing the following auxiliary sequence

P
+
c(n) = r1(m) + k_idaer (a-k) (23)

in which the ay coefficients as generated from
expression (19) are used. Due to the nacture of the
causal image sequence and the underlying Yule~
Walker equations (17), it {s readily shown chat
this aux{liary sequence is identically zero outside
the indexing range 0 < n < max(p,q). Using this
fact, the Fourier transform of relationship (23)

is found to yield

-4
C’(cjw) ) c(nyedum , 8 = nax(p,q) (24)
n=0
. Ap(eJ“)sx"(-J“’) (25)

Using this result in equation (22), the required
ARMA spectral deasity formulation is obtained

a (e3)C) (o7 +avtele ()

s (e¥) = (26)

Jwy, %, Jw
Ap(e )Ap(c )

To obtain the ARMA model's by coefficients,
we next incorporate relationships (4) and (26) to
generate the comglex conjugate symmetrical poly-
nomial (in the eJW) expression

B (38563 = A (305 () +ag (e e ()
@n

A spectral factorazation of the right side poly-
nomial will yield 2q roots which occur in complex
conjugate reciprocal sets. One then need only
select an appropriate q of these roots to decter-
mine the required By(elw) term (e.g., the minimum
phase selection).

To summarize, the spectral density function
and the model coefficients corresponding to an
ARMA time series of order (p.q) may be obtained by
following the systematic procedure outlined in
Table 1. To carry out this procass, it is
necessary to have knowledge of the order pair
(p,q) and the autocorrelation elements ty(n) for
0 <n < q+p.




1. Solve Relationship (19) for the p auto-
regressive ay coefficients. This will re-
quire setting t > p.

2. Cenerate the auxiliary sequence c(n) and its
Fourier transform using expressions (23) and
(24), rvespectively.

3. The required spec:ui density is given by
relationship (26).

4. Perform a spectral factorization of the
polynonial B(eJw)p*(el®) as given by ex-

; pression (27) to obtain the required by
coefficients.

Table 1: Generation of the spectral density and
the ARMA model parameters assoclated with a
given set of autocorrelation values.

V. EXAMPLE

To demongtrate the relative effectiveness of
the MA, AR, and ARMA modeling schemes presented in
the last three sections, let us consider the class-
ical problem of generating spectral estimates of
a time series composed of two sinusoids in additive
white noise. Namely, the time series will be
governed by the relationship

x(n) = a,sin(w;a+8,) +a,sinw,nt8,) +w(n) (28)

in which @) and 9, are independent random variables
uniformly distributed on [0,2l1] and w(n) is a zero
mean white noise process whose individual elements
have variance 0“. The sinusoidal amplitudes aj and
az, and, normalized frequencies w) and wp will be
here taken to be unknown constants.

It is readily shown that the autocorrelation
sequence corresponding to this time serias is
given by

~

2 <
r (n) = 3 cos(uln) +3 con(mzn) +026(n) (29)
x v v

Upon taking the Fourier transform of this auto-~
correlation sequence, the associated spectral den-
sity function is found to be

5 (ed¥ .“lzn 5 +6(
5 (e”) 5 ( (w-ul) whwy )]

+ a—zz—"[‘s(“"“'z’*““"“z” +o?
for ~-M<w<l (30)

This spectral density function is seen to be com-
posed of dirac delta functions located at fre-
quencles *t w] & * w) riding on top of a constant
value 72 due to the additive white noisa.

Using the given autocorrelation elements (29)
as entries, the three spectral estimation pro-
cedures just described were next utilized to
generate MA, AR, and ARMA models. The specific

z‘rhe normalized frequency variables are taken to
lie (n the fatezval (O0,N].

choices for the time series parameters were taken
to be a; = /20, wy = 0.471, a3 = /2, wp = 0.426M and
02 = 1." This selection provides individual sinu-
soid signal-to-noise ratios of 10dB (decibels) and
0dB. Due to the relative closeness of the sinu-
soid frequencies, this example provides an excel-
lent measure of the frequency resolution capabili-
ties of the three modeling procedures. A brief
description of the results obtained for this
example now follows.

MA Spectral Estimates

The autocorrelation elements as specified by
expression (29) where incorporated ianto the MA
spectral model relationghip (6) in which the
window function is taken to be rectangular (i.e.,
w(n) = 1 for 0 < n < q). The spectral estimates
thereby achieved for the specific order selections
q = 15, 30, and 200 are displayed in Figure 1.
From these plots it is clear that the MA modeling
procedure ig unable to resolve the sinusoids for
the order selections q = 15 and 30. When q ia set
to 200, it is possible to just barely detect the
presence of the lower amplitude sinusoid. It is
appaxent from this example that classical Fourier
approaches provide relatively poor vehicles for
achieving frequency resolution even when exact
autocorrelation elements are used.

AR Spectral Estimates

The autocorrelation elements (29) were next
incorporated into the optimum one-step predictor
(or maximum entropy) expression (15), with AR
order choices of p = 15 and 30. The two AR spect~-
ral estimataes which resulted are shown in Figure
2 where it is apparent that a frequency resolution
is achieved for p = 30, but, not for p = 15. In
contrast to the classical Fourier approach, the
AR spectral modeling procedure is capable of
achieving the required frequency resolution with
a reasonably small order model.

ARMA Spectral Estimate

In the final modeling approach, the auto-
correlation elements (29) were next used to obtain
an ARMA model of order (4,4) using the procedure
as outlined in Table 1. The resultant spectral
estimate is plotted in Figure 3 and is seen to
correspond precisely with that as given in
equation (30).3 This should not be surprising
conaidering the fact that the given autocorrelation
sequence (29) {s an ARMA time series of order (4,4).
Thus, the model used in this case precisely matches
the time series being examined.

VI.- HIGH PERFORMANCE METHOD OF
ARMA SPECTRAL MODELING

It is possible to adapt many of the i{deas of
Section IV to achieve an ARMA spectral estimate
wvhen only the time series observation (1) are

JIf infinite precision computatiomswere utilized,

there would be an exact pole-zero cancellation and
an associated constant spectral density function.
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available (and not autocorrelation values). We
shall again treat separately the cases of auto-
correlation and moving average coefficient deter-
mination.

Autoregressive Coefficient Estimation

To implement the autoregressive coefficient
selection process as repregented by relationship
(19). {t will be necessary to compute appropriate
autocorrelation estimates from the given set of
time series' observations. The high performance
ARMA method effects these estimates in the guise
of a convenient amstrix format which lends itself
to a particularly efficient computational realiza-
tion {2]&[4]. 1In particular, the autocorrelation
matrix and vector required in expression (19) are
estimated according to

R = Y'x (31)

o= Yy (32)
where the dagger symbol + denotes the operation of
complex conjugate transposition. The (N-p)xp
Toeplitz type matrix X is specified by

(p)  x(p=D)e . . x(1) 1

k(D) x(P) . . . x(2)
X=, . . . |
. : ) ‘ (33)

Lo . .o
x(N-1)  x(N2) X(N=-p) |
: J

while the (N-p)xt Toeplitz type matrix Y has the
form

Cx(p-q) x(p-q-1) . . .x(p-q-c+1)1
x(p=q+l)  x(p=d) . . . .x(p-q~t+2)|
(o : ! (34)
Y- )
!x(N-q-l) x(N-q=2) . . .x(N=g-t)
- -t
and x i{s a (N-p)xl vector given by“
» = [x(p+tl), x(p+2), . . . x(®]' (35)

In formulating matrix Y, we have used the con-
vention of setting to zero any elements x(k) for
which k liee outside the observation index range
1 < k < N.

If the autocorrelation matrix and vector
estimates (31) aad (32), respectively, are substi-
tuted into the Yule-Walker relationship (19),
however, it is generally found that the resultant
system of t equations in the p autoregressive
coefficients is inconsistent for t > p. This is
due to inevitable inaccuracies in the auto~-
correlation estimates, and, to a possible impropar

“A more generalized version of this estimation
scheme can be obtained by substituting ths inte-
ger k for p wherever p appears in relationships
(33) ~ (35). For ease of presentation, k ia
here restricted to be p.

ARMA model order choice. In any case, the system
of equations with these estimate substitutions
will give rise to the txl Yule-Walker approximation
error vector as specified by

e=YtXa+ vy (36)

Upon taking the expected value of e, it i{s found
that for the ARMA modeling order choice in which
q > p, that this expectation results in

P
E{e(k)} = (N-q-k) |z _(q+k) + | ar (q+k-m)|, 1<kce
_ ml X (a7

while for the modeling order case q <p this ex-
pectation produces

P
(WW)L(WH+ Iar (atk-m){, L<k<p—q
X m_lmx

E{e(k)} = P
(N-q~k) | r_(q+k) + Zamrx(q-'-k-m) g <kt
\_ =] (38)

In either ordering case, it is seen that when the
time series is an ARMA process of order (p,q), the
expected value of the error vector e can be made
equal to zero by a proper choice of the auto-~
regressive coefficient vector a. Namely, this
selection would be such that the underlying Yule-
Walker equations (17) are satisfied.> This implies
that the system of equations (36) with e = § pro-
vides an unbiased and a consistent estimate of the
Yule-Walker equations,

With the above thoughts in mind, an appealing
approach to selecting the autoregressive co-
efficient vector is immediately suggested. Namely,
a 1is chosen 80 as to make the error vector "as
close” to its expected value of g as possible.
This is of course predicated on the assumption
that the time series is an ARMA process of order
(p,q) or less. In order to attain a tractable
procedure for selecting an appropriate auto-
regressive coefficlent vector, we shall introduce
the following quadratic functional

f(a) = atr o (39)

in which A is a txt positive-definite diagonal
matrix with diagonal elements Ay that is
introduced in order to provide one with the option
of weighting differently the various error vector
components. It is a simple matter to show that an
autoregressive coefficient vector which will
render this quadratic functional a minimum nmust
satisfy

xPrAYtX 3 e - X'y avtx (40)

sA little though will convince oneself that this

sama conclusion will be reached Lif both q and p
are ac least equal to the numerator and denomi-
nator orders, respectively, of the underlying
ARMA time series,
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One then simply solves this consistent system of

p linear equations in the p unknown autoregressive
coefficients to obtain an estimate for the denomi-
nator dynamics of the ARMA model.

Moving - Average Coefficient Estimstion

There exist several procedures for estimating
the ARMA model's moving average coefficients. We
shall now brietly describe two procedures which
have provided satisfactory performance and in a
sense complement one another.

(1) <, Method

The procedure which has provided che bestc
frequency resolution behavior is a direct
adaption of the cy method as described in
Section IV (and ref. {3]). In particular,
using the get of autorvegressive coefficieat
estimates as obtained from expression (40)
and a suitable set of autocorrelation
estimates Ty(n) for n=0,1,...,max(q,p) one
computes the &(n) coefficients using expres-
sion (23). These coefficients are then used
to achieve the desired ARMA spectral estinmate
wvhen incorporated into relationship (24) and
ultimately relationship (26). Although pro-
viding an excellent frequency resolution
behavior, this procedure suffers the drawback
of not having a gusranteed nonnegative defin-
ite spectral density function.® It is with
this in mind that the following well known
saoothed periodogram method was adapted [13].

(i11) Smoothed Periodogram Method

In the smoothed periodogram approach,
one first computes the so-called ''residual"
time-serias elements according to the relation-
ship (see ref. [3]).

P
e(n) =x(n) + ﬁk'x(n—k) for p<n<N (41)
k=1

in which the a)’ autoregressive coefficients
as obtained by solving exprassion (40) are
incorporated. From this relationship the
spectral density expression directly follows

St(cj"’)

8 (a7 = (42)

Jis (3|2

1f S,(r’”) is to correspond to an ARMA spect-
ral mnodel of order (p,q), it is clear that a
qth order MA spectral estimate for the resi-
dual spectral density S,(.J“’) wust be obtained
and then substituted into relationship (42).
The smoothed periodogram has been found to be
a useful tool for this purpose.

In the smoothed periodogram method, one first
partitions the computed rasidual elements (41) into
L segments each of length g+l as specified by

Gl'hiu shortcoming may be superficially avoided by

taking the absolute value of the spectral estimate.

ck(n) = c(a+p+1l+kd) O<n<q (43)

O<ksl-l

where ""d"" 18 a positive integer which specifies the
time shift between adjacent segments. These indi-
vidual segments will overlap 1if d <q and will per- :
fectly partition the residual sequence when d =q+1. !
In order to include only computed elements, the
relevant parameters must be selected so that
q+p+1+(L-1)d <N. Next the periodogram for each
of these L segments is taken and then sveraged to
obtain the desired qth order smoothed periodogram,
that is

2
-jwn

q
[ w(n)e, (n)e (44)

L-1
§ (9 o1
€ L 1=0

1
kzo a+l

where w(n) is a window sequence that is normally
selected to be rectangular (i.e., w(n) «1//q+l for
0<n<q). 1t is readily shown that this procedure
results in a desired nonnegative qth order MA
spectral density estimate. Unfortunately, its
frequency resolution capability is gemerally not
of the same quality as that of che cy method.’

On the other hand, the smcothed perilodogram method
provides more smoothly behaved spectral estimates
which contain fewer spurious effects.

To summarize, the reaquired ARMA spectral wodel
is obtained by following the systematic procedure
outlined in Table 2. The numerator dynamic esti-
mation procadure to be used will of course depend
on the particular characteristic being sought (e.g.,
frequency resolution, smoothmess, etc.)

1. Specify values for the ARMA model's order
parameter pair (q,p), the Yule-Walker
equation parameter t, and, the weighting
matrice'sdiagonal elements Agk.

2. Using the time series observations x(1),
2(2),...,x(N), conastruct the matrices X, Y,
and vector x according to relationships (33),
(34), and (35), respectively.

3. Determining the model's autoregressive co-
efficients by solving relatioaship (40).

4. The numerator's dynamics are obtained by
using either the (1) cy method, or,
(11) the smoothed pariodogram wethod.

B e

Table 2: Basic steps of the standard high per-~
formance ARMA spectral estimation method:
The Block Processing Mode.

The improved spectral estimation performance
obtained in using this high performance method
over contemporary ARMA techniques such as the Box-
Jenkins method is, to a large extent, & conse-
quence of selacting the integer t to be larger
than the sinisal value p. With the corresponding
larger set of Yule-Walker equations that are

7A similar approach shares the same attributes as

does the smoothed periodogram [14].
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thereby being approximated, it intuitively follows
that the model's autoregressive coefficients will
be less sensitive to autocorrelation estimate
errors which are embodied in Y'X and Y'x than would
be the case if t were set to p (as in the Box-
Jenkins method). This anticipated improvement in
spectral estimation behavior when using the high
performance method has in fact been realized on a
rather large number of numerical examples [l]-{4].
It i{s shown in reference {4} & [8] that this high
performance method also lends itself to a particu-
lar fast adaptive implementation mode when t = p.
With the two attributes of improved spectral
estimation performance and computational efficiency,
this new procedure promises to be an important
spectral estimation tool.

It 1s of interest to note that when q = 0 and
t = p, the high performance ARMA spectral esti-
mation method reduces to the well known AR co-
variance method. Moreover, upon letting t exceed
p» the resultant set of expanded AR Yule-Walker
equation approximations will typically result in
better spectral estimates than the standard AR co-
variance method. To the author§ knowledge, this ap-~
proach has not been used in the various AR spectral
estimation procedures developed to date.

VII. CONCLUSION

A computationally efficient closed form
method of ARMA spectral estimation has been pre-
sented. It {s predicated on the approximation of
a set of Yule-Walker equation estimates which are
generaced from a given set of time series obser-
vations. The ARMA model's autoregressive
coefficients are determined by solving a consistent
system of linear equations.

The spectral estimation performance of this
ARMA modeling procedure has been empirically found
to exceed that of such counterparts as the maximum
entropy and Box-Jenkins methods (e.g3., see refs.
{1)-{4] & [9)). This behavior is, to a large
extent, a consequence of the fact that more than
the minimal oumber of Yule-Walker equation esti-
mates are being approximated to obtain the resulc-
ant ARMA model parameters,
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